If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-6x-126=0
a = 5; b = -6; c = -126;
Δ = b2-4ac
Δ = -62-4·5·(-126)
Δ = 2556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2556}=\sqrt{36*71}=\sqrt{36}*\sqrt{71}=6\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{71}}{2*5}=\frac{6-6\sqrt{71}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{71}}{2*5}=\frac{6+6\sqrt{71}}{10} $
| 3a+18=5a+8 | | 110=2x+1(x)(4) | | 8-3x=-9-(2x+5) | | 5x^2=6x+126 | | 1125-5x^2=0 | | 15+t=9 | | 1.3*0.8x=1.25x-10.5 | | 4x^2+124x+9=0 | | 2x+7-3x=2x+1 | | 0x+3=5 | | 7x^2-4x-75=0 | | |x-2|=12 | | x2-4x-4x=-4-3 | | 4m+3=-2 | | -3b=-45 | | 3(b-2)+5=7+3(2-5)-38 | | 0.15x+9=0.45 | | 98=2(n-6) | | 3(n+8)=72 | | 180-(360÷x)=10 | | (3^x)(4^(x+2))=8 | | 7x+10x(45-x)=420 | | 3x+240=4x-80 | | 25^1/2+3x=3125 | | 4(7x+5)+8(6x-7)=-13 | | 6(m-1=24 | | (x-2)180/x=140 | | (x²+2x+1)=25 | | .15x=450 | | 2÷(8-x)=1,41÷x | | 2÷8-x=1.41÷x | | 2x=1.41(8-x) |